luca-awesome-dotfiles/home/.config/awesome/libs/rubato/timed.lua
2023-02-05 05:02:49 +01:00

354 lines
12 KiB
Lua

if not RUBATO_DIR then RUBATO_DIR = (...):match("(.-)[^%.]+$") end
if not RUBATO_MANAGER then RUBATO_MANAGER = require(RUBATO_DIR.."manager") end
local subscribable = require(RUBATO_DIR.."subscribable")
local glib = require("lgi").GLib
--- Get the slope (this took me forever to find).
-- i is intro duration
-- o is outro duration
-- t is total duration
-- d is distance to cover
-- F_1 is the value of the antiderivate at 1: F_1(1)
-- F_2 is the value of the outro antiderivative at 1: F_2(1)
-- b is the y-intercept
-- m is the slope
-- @see timed
local function get_slope(i, o, t, d, F_1, F_2, b)
return (d + i * b * (F_1 - 1)) / (i * (F_1 - 1) + o * (F_2 - 1) + t)
end
--- Get the dx based off of a bunch of factors
-- @see timed
local function get_dx(time, duration, intro, intro_e, outro, outro_e, m, b)
-- Intro math. Scales by difference between initial slope and target slope
if time <= intro then
return intro_e(time / intro) * (m - b) + b
-- Outro math
elseif (duration - time) <= outro then
return outro_e((duration - time) / outro) * m
-- Otherwise (it's in the plateau)
else return m end
end
--weak table for memoizing results
local simulate_easing_mem = {}
setmetatable(simulate_easing_mem, {__mode="kv"})
--- Simulates the easing to get the result to find an error coefficient
-- Uses the coefficient to adjust dx so that it's guaranteed to hit the target
-- This must be called when the sign of the target slope is changing
-- @see timed
local function simulate_easing(pos, duration, intro, intro_e, outro, outro_e, m, b, dt)
local ps_time = 0
local ps_pos = pos
local dx
print("simulating")
-- Key for cacheing results
local key = string.format("%f %f %f %s %f %s %f %f",
pos, duration,
intro, tostring(intro_e),
outro, tostring(outro_e),
m, b)
-- Short circuits if it's already done the calculation
if simulate_easing_mem[key] then return simulate_easing_mem[key] end
-- Effectively runs the exact same code to find what the target will be
while duration - ps_time >= dt / 2 do
--increment time
ps_time = ps_time + dt
--get dx, but use the pseudotime as to not mess with stuff
dx = get_dx(ps_time, duration,
intro, intro_e,
outro, outro_e,
m, b)
--increment pos by dx
ps_pos = ps_pos + dx * dt
end
simulate_easing_mem[key] = ps_pos
return ps_pos
end
--RUBATO_TIMEOUTS contains multiple timeouts for different rates
--function creates timers which run in the background handling animations at distinct rates
--this allows for rates to change dynamiclally during runtime should you wanna set everything's
--rate to like 2fps for some reason or if you wanna switch from 144Hz to 60Hz or something
--first index is normal timeouts, second index is override_dt timeouts
if not RUBATO_TIMEOUTS then RUBATO_TIMEOUTS = {{}, {}} end
--create_timeout is called whenever a timer tries to start an animation and there's not a timeout
--with the correct rate already in RUBATO_TIMEOUTS
local function create_timeout(rate, override_dt)
local time_last = glib.get_monotonic_time()
local initial_dt = 1 / rate
return glib.timeout_add(glib.PRIORITY_DEFAULT, initial_dt * 1000, function()
local dt = initial_dt
if not override_dt then
local time = (glib.get_monotonic_time() - time_last) / 1000000
if time >= initial_dt * 1.05 then dt = time end --give it 5% moe
end
for _, obj in pairs(RUBATO_MANAGER.timeds) do
if obj.rate == rate and obj.override_dt == override_dt and obj._time ~= obj.duration and not obj.pause then
--increment time
obj._time = obj._time + dt
--get dx
obj._dx = get_dx(obj._time, obj.duration,
(obj._is_inter and obj.inter or obj.intro) * (obj.prop_intro and obj.duration or 1),
obj._is_inter and obj.easing_inter.easing or obj.easing.easing,
obj.outro * (obj.prop_intro and obj.duration or 1),
obj.easing_outro.easing,
obj._m, obj._b)
--increment pos by dx
--scale by dt and correct with coef if necessary
obj.pos = obj.pos + obj._dx * dt * obj._coef
--sets up when to stop by time
--weirdness is to try to get as close to duration as possible
if obj.duration - obj._time < dt / 2 --[[or obj.is_instant]] then
obj.pos = obj._props.target --snaps to target in case of small error
obj._time = obj.duration --snaps time to duration
obj._is_inter = false --resets intermittent
--run subscribed in functions
--snap time to duration at end
obj:fire(obj.pos, obj.duration, obj._dx)
-- awestore compatibility
if obj.awestore_compat then obj.ended:fire(obj.pos, obj.duration, obj._dx) end
--otherwise it just fires normally
else obj:fire(obj.pos, obj._time, obj._dx) end
end
end
time_last = glib.get_monotonic_time()
return true
end) end
--- INTERPOLATE. bam. it still ends in a period. But this one is timed.
-- So documentation isn't super necessary here since it's all on the README and idk how to do
-- documentation correctly, so please see the README or read the code to better understand how
-- it works
local function timed(args)
local obj = subscribable()
function obj:reset_values()
--set up default arguments
self.duration = args.duration or RUBATO_MANAGER.timed.defaults.duration
self.pos = args.pos or RUBATO_MANAGER.timed.defaults.pos
self.prop_intro = args.prop_intro or RUBATO_MANAGER.timed.defaults.prop_intro
self.intro = args.intro or (RUBATO_MANAGER.timed.defaults.intro > self.duration * 0.5 and self.duration * 0.5 or RUBATO_MANAGER.timed.defaults.intro)
self.inter = args.inter or args.intro
--set args.outro nicely based off how large args.intro is
if self.intro > (self.prop_intro and 0.5 or self.duration) and not args.outro then
self.outro = math.max((self.prop_intro and 1 or self.duration - self.intro), 0)
elseif not args.outro then self.outro = self.intro
else self.outro = args.outro end
--assert that these values are valid
--deal with 0.1+0.2!=0.3 somehow??
assert(self.intro + self.outro <= self.duration or self.prop_intro, "Intro and Outro must be less than or equal to total duration")
assert(self.intro + self.outro <= 1 or not self.prop_intro, "Proportional Intro and Outro must be less than or equal to 1")
self.easing = args.easing or RUBATO_MANAGER.timed.defaults.easing
self.easing_outro = args.easing_outro or self.easing
self.easing_inter = args.easing_inter or self.easing
--dev interface changes
self.log = args.log or RUBATO_MANAGER.timed.defaults.log
self.debug = args.debug
self.awestore_compat = args.awestore_compat or RUBATO_MANAGER.timed.defaults.awestore_compat
--animation logic changes
self.override_simulate = args.override_simulate or RUBATO_MANAGER.timed.defaults.override_simulate
self.rapid_set = args.rapid_set == nil and self.awestore_compat or args.rapid_set
self.is_instant = args.is_instant
-- hidden properties
self._props = {
target = self.pos,
rate = args.rate or RUBATO_MANAGER.timed.defaults.rate,
override_dt = args.override_dt or RUBATO_MANAGER.timed.defaults.override_dt
}
end
obj:reset_values()
-- awestore compatibility
if obj.awestore_compat then
obj._initial = obj.pos
obj._last = 0
function obj:initial() return obj._initial end
function obj:last() return obj._last end
obj.started = subscribable()
obj.ended = subscribable()
end
-- Variables used in calculation, defined once bcz less operations
obj._time = 0 -- current time
obj._dt = 1 / obj._props.rate -- change in time
obj._dt_index = obj._props.override_dt and 2 or 1 --index in RUBATO_TIMEOUTS
obj._dx = 0 -- value of slope at current time
obj._m = 0 -- slope
obj._b = 0 -- y-intercept
obj._is_inter = false --whether or not it's in an intermittent state
-- Variables used in simulation
obj._ps_pos = 0 -- pseudoposition
obj._coef = 1 -- corrective coefficient TODO: apply to plateau
-- Set target and begin interpolation
local function set(value)
--if it's instant just do it lol, no need to go through all this
if obj.is_instant then obj:fire(value, obj.duration, obj.pos - value); return end
--disallow setting it twice (because it makes it go wonky sometimes)
if not obj.rapid_set and obj._props.target == value then return end
--animation values
obj._time = 0 --resets time
obj._coef = 1 --resets coefficient
--ensure that timer for specific rate exists, then set it
if not RUBATO_TIMEOUTS[obj._dt_index][obj.rate] then RUBATO_TIMEOUTS[obj._dt_index][obj.rate] = create_timeout(obj.rate, obj.override_dt) end
obj._dt = 1 / obj.rate
--does awestore compatibility
if obj.awestore_compat then
obj._last = value
obj.started:fire(obj.pos, obj._time, obj._dx)
end
-- if the animation is in motion (pos != target) reflect that in is_inter
obj._is_inter = obj.pos ~= obj._props.target
--set initial position if interrupting another animation
obj._b = obj._is_inter and obj._dx or 0
--get the slope of the plateau
obj._m = get_slope((obj._is_inter and obj.inter or obj.intro) * (obj.prop_intro and obj.duration or 1),
obj.outro * (obj.prop_intro and obj.duration or 1),
obj.duration,
value - obj.pos,
obj._is_inter and obj.easing_inter.F or obj.easing.F,
obj.easing_outro.F,
obj._b)
--if it will make a mistake (or override_simulate is true), fix it
--it should only make a mistake when switching direction
--b ~= zero protection so that I won't get any NaNs (because NaN ~= NaN)
if obj.override_simulate or (obj._b ~= 0 and obj._b / math.abs(obj._b) ~= obj._m / math.abs(obj._m)) then
obj._ps_pos = simulate_easing(obj.pos, obj.duration,
(obj._is_inter and obj.inter or obj.intro) * (obj.prop_intro and obj.duration or 1),
obj._is_inter and obj.easing_inter.easing or obj.easing.easing,
obj.outro * (obj.prop_intro and obj.duration or 1),
obj.easing_outro.easing,
obj._m, obj._b, obj._dt)
--get coefficient by calculating ratio of theoretical range : experimental range
obj._coef = (obj.pos - value) / (obj.pos - obj._ps_pos)
if obj._coef ~= obj._coef then obj._coef = 1 end --check for div by 0 resulting in NaN
end
--set target, triggering timeout since pos != target
obj._props.target = value --sets target
--finally, fire it once with initial values
obj:fire(obj.pos, obj._time, obj._dx)
end
if obj.awestore_compat then function obj:set(target) set(target) end end
-- Functions for setting state
-- Completely resets the timer
-- this is more like an "abort" than a "reset" since I don't keep track of intiial position
function obj:abort()
obj._time = 0
obj._props.target = obj.pos
obj._dx = 0
obj._m = nil
obj._b = nil
obj._is_inter = false
obj._coef = 1
obj._dt = 1 / obj.rate
obj:fire(obj.pos, obj.time, obj._dx) --fire once to reset visually too
end
--override to allow calling fire with no arguments
local unpack = unpack or table.unpack
function obj:fire(...) args = ({...})[1] and {...} or {obj.pos, obj._time, obj._dx}; for _, func in pairs(obj._subscribed) do func(unpack(args)) end end
--subscribe stuff initially and add callback
obj.subscribe_callback = function(func) func(obj.pos, obj._time, obj._dt) end
if args.subscribed ~= nil then obj:subscribe(args.subscribed) end
-- Metatable for cooler api
local mt = {}
function mt:__index(key)
-- Returns the state value
if key == "running" then
if obj.pause then return false
else return obj._props.target ~= obj.pos end
-- If it's in _props return it from props
elseif self._props[key] then return self._props[key]
-- Otherwise just be nice
else return rawget(self, key) end
end
function mt:__newindex(key, value)
-- Don't allow for setting state
if key == "running" then return
-- Changing target should call set
elseif key == "target" then set(value) --set target
-- Changing rate should also update dt
elseif key == "rate" then
self._props.rate = value
self._dt = 1 / value
-- Changing override_dt should also update dt_state
elseif key == "override_dt" then
self._props.override_dt = value
self._dt_index = self._props.override_dt and 2 or 1
-- If it's in _props set it there
elseif self._props[key] ~= nil then self._props[key] = value
-- Otherwise just set it normally
else rawset(self, key, value) end
end
setmetatable(obj, mt)
table.insert(RUBATO_MANAGER.timeds, obj)
return obj
end
return timed